JMUnit 1.2

Java Micro Unit

Brunno Silva
Carl Meijer

August 2008

1 Unit-Tests and Test-Driven Development

A unit test is a test that exercises only one piece of functionality within a piece
of production code. Since unit tests execute so little code, they run fast which
encourages frequent testing. Also, when a unit test fails it is usually fairly
straight forward to locate the error since only a few lines of code were exercised
by the test.

Unit-testing is frequently associated with Test-Driven Development (TDD).
In TDD a developer will write a test that specifies some behavior that they
expect to see. Only once the test has been written will they write the production
code that should pass the test. Paul Hammill [1] refers to TDD as “test twice,
code once” since the development of a piece of code involves the following three
stages:

e Write a test, run it and see it fail.
e Write the code that exhibits the expected behaviour.
e Run the test again and watch it succeed.

The unit tests should run within a framework that can collect all the tests
that need to be run and report the results in a concise and easy to understand
manner. The most popular test framework for Java is JUnit created by Kent
Beck and Erich Gamma. The success of JUnit has spawned a family of test
frameworks for other languages that are known collectively as xUnit. JUnit
relies on the reflection API to perform its magic; unfortunately reflection isn’t
supported in Java ME. JMUnit is a member of the xUnit family suitable for
testing Java ME applications.

2 Using JMUnit

Figure 1 shows the core classes of JMUnit; in practice you will almost certainly
extend the TestCase when creating your tests. Since TestCase extends MIDlet
your tests can be run directly in your IDE or on a device. As an aside, this is
a significant difference from JUnit where TestCases are run by a TestRunner
class that uses introspection to determine the tests that need to be run. Since
Java ME doesn’t support reflection the JUnit TestRunner idiom is poorly suited
for mobile testing.

Figure 1: Core JMUnit classes

2.1 Assertions

The Assertion class provides the basic functionality of the test framework: an
ability to check values and to throw an exception if an actual value differs from
the expected value. The methods of the Assertion class are static.

An example of a method of the Assertion class is assertEquals(int expected,
int actual). This method will throw an AssertionFailedException if expected
I= actual. There are similar methods for checking whether booleans, bytes,
shorts, chars, longs or Objects are equal. If you've looked at the JMUnit dis-
tribution, you’ll have seen that there are two libraries; the first is for CLDC 1.0
and the second is for CLDC 1.1. The CLDC 1.1 distribution includes assertions
for checking that floats and doubles are equal.

The Assertion class also has convenience methods for checking whether a
boolean result is true or false (assertTrue and assertFalse), whether an
Object is null (assertNull and assertNotNull) and whether Objects are
identical (assertSame and assertNotSame).

There are two variants of each assert method. The one variant takes a
String message as a parameter and the second doesn’t. If an assertion fails and
the first variant is used, the message will be set in the AssertionFailedException.

Finally there are two fail static methods (one with a message parameter
and one without) that can be used to throw an AssertionFailedException.
Typically these are used when a method under test is expected to throw an
Exception but failed to.

The JMUnit JavaDocs contain more information. A good and inexpensive
source of information is Kent Beck’s pocket guide to JUnit [2] which also includes
concise information about writing idiomatic unit tests.

The rest of this section will look at writing tests; the samples can be found
in the examples directory in the JMUnit distribution.

2.2 Writing a TestCase

To write a test case you will need to extend the jmunit.framework.cldc1X.TestCase
class where “X” is either 0 or 1 depending on whether you are targeting CLDC
1.0 or 1.1. The TestCase class does not provide a default constructor so your
test needs to implement a constructor. Your test will also need to implement the
abstract test (int testNumber) method. Listing 1 shows a minimal TestCase.

Listing 1
package com. foo;
import jmunit.framework.cldcl10.TestCase;

public class FooTest extends TestCase {

public FooTest () {
super (0, "FooTest");

public void test (int testNumber) throws Throwable {
switch (testNumber) {

}

}

The TestCase constructor takes two arguments: the number of tests to be
run and the name of the test. A more realistic TestCase would have more than
zero tests as in listing 2 in which we have three tests.

Listing 2
package com. foo;
import jmunit.framework.cldcl10.TestCase;
public class FooTest extends TestCase {
public FooTest () {

super (3, "FooTest");

public void test(int testNumber) throws Throwable {

switch (testNumber) {

case O0:
testIsEmpty ();
break;

case 1:
testAdd (3, 5, 8);
break;

case 2:
testAdd (2, 1, 3);
break;

default:
break;
}

public void testIsEmpty () {
Foo foo = new Foo ()
assertTrue (foo.isEmpty ());
foo.add(new Object ());
assertFalse (foo.isEmpty ());

}

public void testAdd(int addend, int augend, int expected) {
Foo foo = new Foo ();
int actual = foo.add(addend, augend);
assertEquals ("testAdd", expected, actual);

¥

The TestCase in listing 2 has two test methods but the one test method is
invoked twice, so the TestCase constructor is invoked with the argument 3 not
2. Note that this method of writing parameterized tests is different from JUnit;
JUnit 3.8 doesn’t support parameterized tests while JUnit 4 uses annotations
to specify test parameters.

Both test methods in listing 2 need to create an instance of Foo. A common
pattern is to create a test fixture to create the objects that you will be testing
against; these objects can include the object under test (OUT) as well as collab-
orators of the OUT. In JMUnit, like JUnit, the common creation code resides
in the setUp method of the TestCase. The setUp method is called before a
test runs. Listing 3 shows a refactoring of listing 2 where we create the OUT in
the setUp method. Obviously the benefits of using a setUp() are greater when
you have more test methods and when the OUT collaborates with other objects
that also need to be created.

Listing 3

package com. foo;

import jmunit.framework.cldcl10.TestCase;
public class FooTest extends TestCase {

// The OUT.
private Foo foo;

public void setUp () {

this.foo = new Foo ();
}

public FooTest () {
super (3, "FooTest");

public void test(int testNumber) throws Throwable {

switch (testNumber) {

case O0:
testIsEmpty ();
break;

case 1:
testAdd (3, 5, 8);
break;

case 2:
testAdd (2, 1, 3);
break ;

default:
break;
}

}
public void testIsEmpty () {
assertTrue (foo.isEmpty ());
foo.add (new Object ());
assertFalse (foo.isEmpty ());
}
public void testAdd(int addend, int augend, int expected) {
int actual = foo.add(addend, augend);
assertEquals ("testAdd", expected, actual);

}

Finally, JMUnit also supports a tearDown method that is called after a test
has completed. This can be used to free resources allocated during a test. For
example, one might ensure that all network connections opened in a test are
closed or that any record stores created are deleted. Our TestCase doesn’t
need a tearDown method.

2.3 TestSuite

Java ME applications are very small by comparison with Java SE and EE appli-
cations and much of their code is difficult to test (for example, U components),
so they usually have fewer tests. However even for Java ME applications you
will usually need more than one TestCase. Running each TestCase individu-
ally is tedious; the solution is to create a TestSuite. Referring back to figure
1, TestSuite also extends MIDlet and so can also be executed. A TestSuite
contains instances of Test. When a TestSuite is run, all the Tests are run.
Notice that since both TestCase and TestSuite extend Test, TestSuites can
contain TestCases and other TestSuites.

Listing 4 shows how simple it is to create a TestSuite: simply invoke the
add(Test test) method inside the constructor of the TestSuite.

Listing 4
package com. foo;
import jmunit.framework.cldcl0.TestSuite;

public class Suite extends TestSuite {
public Suite () {
super ("All Tests");
add (new FooTest ());
add (new BarTest ());

® +5550000 - Me... [T 2]X]

MIDIet View Help

Fatl 2 ED

JMUnit 1.2
All Tests

Pass: 5
Fail: 0
Error: 0
Total: 5

1

Time: ems

Exit Test

\ 4E’> -~
A E 1

1« || 200 || 3
44- || 5= br+
74 || 8= [9»
ku- || O || #e+

Figure 2: JMUnit MIDlet

2.4 Running the Tests

If you run the TestSuite of listing 4 in the WTK emulator, you’ll see something
similar to figure 2. The MIDlet has two buttons, “Exit” and “Test”. Pressing
the “Test” button runs all the tests. In this case all tests passed. If tests fail,
stack traces will be dumped to the console and the test bar will change from
green to red. Once the tests have finished, any errors will also be displayed on
the device screen as shown in figure 3. The errors shown on the device are not
as detailed as those printed to the console. Notice that an error specifies the
test case name (FooTest) and the test number (2).

3 Testing on Real Devices

The strength of JMUnit is that it allows your unit tests to be run on real phones.
You could use JUnit to write your unit tests and run them within your IDE but
that wouldn’t give the same degree of confidence in your software as running
the tests on a real handset. Also JMUnit 1.2 introduces some performance mon-
itoring methods (described later) to check that your code performs adequately
on a real device.

3.1 Device Problems

As shown in figure 1, both TestCase and TestSuite extend MIDlet. If you
instantiate a TestSuite you will create more than one instance of MID1let: the
TestSuite MIDlet and one or more TestCase MIDlets. Java ME has a security
constraint that a MIDlet may only create another MIDlet in its constructor
(which is why the TestCases are added to the TestSuite in the constructor
in listing 4). Unfortunately many real devices regard any attempt to create a
MIDlet within a MIDlet as a SecurityException. In particular devices from

& +5550000 - Me... [= |7[X]

MIDlet Yiew Help

Failres: 1

Errors: 0

There was 1 faiure:

1)

FooTest#2

testdd, Expected 3, but was §

Display based on J2MELRE

Ok

> ||
&)
)

1« || 21p | 30
44- | 5m | Br+
74 || 8= | 9p»

ko= Jl O || #ui+

Figure 3: JMUnit Errors

Nokia and Motorola will not run TestSuites, Sony-Ericssons appear to be per-
fectly happy with TestSuites.
What this means is:

Run only TestCases on real devices, not TestSuites.

3.2 Performance Monitoring

Java ME has two significant limitations compared to Java SE:

e Heap space. MSA devices should provide at least 1 MB of heap
space while JTWI compliant devices need to provide 256 kB of
heap space. This is substantially less than is available on the
Java SE platform.

e Speed. Java ME applications run considerably more slowly
on low-end devices than Java SE applications or applications
running within the WTK emulator.

The speed issue can be particularly noticeable when accessing the record
store; see http://www.poqit.com/midp/bench/ for more details on how slow
CRUD operations on a RecordStore can be; Motorola devices appear to be
particularly bad so (and are, consequently, recommended for real world testing).

Figure 4 shows the PerformanceMeasurement interface and that it’s im-
plemented by the TimedMeasurement and MemoryMeasurement classes. The
PerformanceMeasurement interface exposes two methods: a startMeasurement ()
method and an endMeasurement () method. A TestCase invokes startMeasurement ()
immediately after calling the setUp() method. The endMeasurement () method
is called immediately before the tearDown() method is invoked. This ensures
that the test fixture code does not affect the measurement.

<<interface>>
PerformanceMeasurement|

Sarthdcasurement()
encieasrementg)

L

‘TimedMeasurement‘ ‘MemorvMeasurement|
|

[[1
L] L]

Figure 4: Performance measurement classes

A PerformanceMeasurement object is registered with a TestCase using the
addPerformanceMeasurement () method. You can, of course, implement classes
that measure performance with respect to metrics other than heap usage or
speed. A PerformanceMeasurement class should throw an (unchecked) excep-
tion if the object under test performed unsatisfactorily.

JMUnit’s performance monitoring was influenced by the JUnitPerf exten-
sions for JUnit (http://clarkware.com/software/JUnitPerf.html).

3.2.1 Monitoring Speed

Listing 5 illustrates the use of the TimedMeasurement class. We run three tests
each of which take about 100 milliseconds. However we expect that the second
test will take 50 milliseconds or less. Consequently when we run the TestCase
we see one failure:

SpeedTest#

1

jmunit.framework.cldcl1l0.AssertionFailedException: Test took too long: 109 ms.

at
at
at
at
at
at
at

jmunit.framework.cldc10.Assertion.fail(+8)
jmunit.framework.cldc10.Assertion.assertTrue(+8)
jmunit.framework.cldc10.TimedMeasurement .endMeasurement (+56)
jmunit.framework.cldc10.TestCase.endPerformanceMeasurements (+43)
jmunit.framework.cldc10.TestCase.run(+63)
jmunit.framework.cldc10.Test.test (+19)
jmunit.framework.cldc10.Guilistener$l.run(+10)

Listing 5

package com. foo;

import jmunit.framework.cldc10. TestCase;
import jmunit.framework.cldcl10.TimedMeasurement;

public class SpeedTest extends TestCase {

public void tearDown () {
removeAllPerformanceMeasurements ();
}

public SpeedTest () {
super (3, "SpeedTest");

public void testNoSpeedRequirements () throws InterruptedException {
Thread.sleep (100);
}

public void testSpeedRequirements () throws InterruptedException {
addPerformanceMeasurement (new TimedMeasurement (50, 0));
Thread.sleep (100);

}

public void test(int testNum) throws Throwable {
switch (testNum) {
case O0:
case 2:
testNoSpeedRequirements ();

break;

case 1:
testSpeedRequirements ();
break;

default :
fail ("No,such,test.");
}

}

The constructor of the TimedMeasurement class takes two arguments: a
maximum running time and a clock resolution. There is also a constructor which
takes only a single argument in which case the clock resolution is assumed to
be 40 milliseconds. Notice how we use the tearDown method to ensure that the
performance measurement is removed after all tests.

Common places to add performance measurements are in the constructor of
your TestCase or, like in listing 5, in a particular test method.

3.2.2 Monitoring Heap Usage

Listing 6 shows how to monitor heap usage. In this TestCase we add the perfor-
mance monitoring in the constructor; we expect that no test will allocate more
than 80 bytes on the heap. The “false” argument passed in the constructor
indicates that the garbage collector must not be run before checking memory
usage.

Listing 6
package com. foo ;

import jmunit.framework.cldc10.MemoryMeasurement ;
import jmunit.framework.cldc10. TestCase;

public class MemoryTest extends TestCase {
public void test100Bytes () {
byte[] b = new byte[100]

public void test40Bytes () {
byte[] b = new byte[40];

public void test60Bytes () {
byte[] b = new byte[60];

public MemoryTest () {
super (3, "MemoryTest");
addPerformanceMeasurement (new MemoryMeasurement (80, false));

}

public void test (int testNum) throws Throwable {
switch (testNum) {
case O0:
test100Bytes ();
break;

case 1:
test40Bytes ();
break;

case 2:
test60Bytes ();
break;

default:
fail ("No,such test.");

}

Since the first test creates a 100 byte array, it is not surprising that the test
fails:

MemoryTest#0

jmunit.framework.cldcl0.AssertionFailedException: Test used too much memory: 116 bytes.
at jmunit.framework.cldcl10.Assertion.fail(+8)
at jmunit.framework.cldc10.Assertion.assertTrue(+8)
at jmunit.framework.cldc10.MemoryMeasurement.endMeasurement (+63)
at jmunit.framework.cldc10.TestCase.endPerformanceMeasurements (+43)
at jmunit.framework.cldc10.TestCase.run(+63)
at jmunit.framework.cldc10.TestSuite.run(+30)
at jmunit.framework.cldc10.Test.test(+19)
at jmunit.framework.cldc10.GuiListener$1.run(+10)

The MemoryMeasurement classes uses the Runtime class’s freeMemory ()
method to determine the amount of heap space used. Some care is needed
when running memory measurement tests in the emulator. If a class under test
instantiates some other class which has not yet been loaded, the emulator will
load the class into memory and the amount of heap space can be reduced by
several kilobytes. Since JavaME does not use ClassLoader classes for dynam-
ically loading classes into RAM this appears to be less of a problem on actual
devices; i.e. tests may pass on a Java ME device but fail in the emulator.

4 JMUnit and Ant

The Ant build tool has excellent support for JUnit since running tests is seen
as integral before packaging and releasing software. Ant is widely used by Java
ME developers since mobile device incompatibilities mean that several different
builds of the same software may be needed; manually building all releases is
both tedious and error-prone. Antenna is widely used with Java ME projects
because of the preprocessor support it adds to Java and because of its support
for packaging, preverifying, obfuscating and signing MIDlets.

In this section we show how JMUnit can be added to your build environment.
There are two approaches:

e Running your JMUnit tests with a third-party Java ME for
SE library like the microemulator (http://microemu.org) or
MEA4SE (part of the kObjects project).

e Launching the WTK emulator from within your build.

The advantage of the first solution is that the tests run without the WTK
emulator (headlessly). The disadvantage is that there are certain problems when
trying to test persistence classes (that use the RecordStore) or UI components.

Two tasks, jmunit and testlistener, arein the jmunit_anttasks-1.2.1.jar
file in the dist directory of this distribution. The build.xml file in the examples
directory illustrates their use. The JMUnit Ant tasks generate XML reports that
can be parsed by the junitreport task to generate reports (e.g. an HTML re-
port that can be emailed to recipients as part of a continuous build process).

4.1 The Jmunit Task

The jmunit task relies on a third-party library like the microemulator. It also
depends on the JDOM API for generating XML and on JMUnit. There are two
derivatives of the jmunit task; one for CLDC 1.0 and the other for CLDC 1.1.

The following line in the build script shows how to add the (CLDC 1.0)
jmunit task to your build script (you could substitute the ME4SE library for
the microemulator):

<taskdef name="jmunit" classname="jmunit.anttask.cldcl10.Jmunit"
classpath="../lib/microemulator.jar:../1lib/jdom. jar:
../dist/jmunit_anttasks-1.2.1.jar:../dist/jmunit4cldc10-1.2.1.jar" />

The following lines show how to invoke the task. The task supports a proper
subset of the junit attributes and elements. If you're familiar with the junit
task you should be able to get the jmunit task working.

<jmunit haltonerror="false" haltonfailure="false" failureproperty="testfailure">
<formatter type="xml" />
<classpath>
<path path="classes" />
</classpath>
<test name="com.foo.BarTest" todir="test_results_jmunit" />
<test name="com.foo.FooTest" todir="test_results_jmunit" />
</jmunit>

The above script runs the BarTest and FooTest TestCases and writes the
results to the test_results_jmunit directory.

The only type currently supported by the formatter is XML; specifying any
other type will cause a BuildException to be thrown.

The XML report generated can be parsed by the junitreport task as spec-
ified in the following lines:

<junitreport todir="test_results_jmunit">
<fileset dir="test_results_jmunit">
<include name="TEST-*.xml" />
</fileset>
<report format="noframes" todir="test_results_jmunit" />
</junitreport>

Figure 5 shows the test results. The results are attractively presented (if
you ignore the fact that the browser is Internet Explorer 6).

4.2 The TestListener Task

The jmunit task is fairly straightforward since it is similar to the junit task.
Unfortunately the microemulator tends to throw NullPointerExceptions when
you invoke a RecordStore if a MIDlet isn’t running. Similar problems exist for
some Ul components. Consequently tests may fail with a NullPointerException
error. An alternative to using the jmunit task is to use the WTK emulator
and the testlistener task. The testlistener task was originally part of the
Hammock J2ME mock object framework. Using the testlistener task is more
complicated than using the jmunit task and involves the following steps:

e Create an instance of the TestRunner class that specifies the
test to be run.

e Package the test into a MIDlet (e.g. using Antenna).

10

4 Unit Test Results - Microsoft Internet Explorer

Unit Test Results

Summary

Tests Failures Errors Success rate

s L] L] 100.00%

Nate: faflures are anticipated and checked far with assertions while errors are unanticipated.

Packages

Note: package statistics are not computed recursively, they only sum up all of its testsuites numbers.

Name Tests Errors Failures Time(s)
com.foo 5 0 o 0.046
Package com.foo

Name Tests Errors Failures Time(s)
BarTest H 0 o 0.046
FooTest 3 0 [0.000
Back to top

TestCase BarTest

Name Status Type
BarTest#0 Success

BarTest#1 Success

File Edit WYiew Favorites Tools Help A
1 1 Al O < i Z o o Bt
¢ > \ﬂ |EL‘ 4|) Search . Favorites & = E ._j _ﬁ
Address |7 C\personalyjmunitl_2\examples\test_results_jmunit\junit-noframes.html hd GU Links
~

Designed for use with JUnit and Ant.

Time

0.046

Time Stamp Host
Tue Aug 19

14:26:51
CAT 2008

Time Stamp Host
Tue Aug 19
14:26:51

CAT 2008

Tue Aug 19

14:26:51
CAT 2008

Time(s}
0.000
0.01s

Properties » %

&

4 My Compuiter

Figure 5: Junitreport Test Results

e Instantiate the testlistener task.

e Run the MIDlet inside the WTK emulator.

Figure 1 showed that TestCase and TestSuite both extend the Test class.
In fact there is a third class, TestRunner, that also extends Test. Both TestCase
and TestSuite require that a user presses the “Test” button to start running

tests; the TestRunner class runs tests immediately when

launched and closes

when the tests have finished running. Additionally, the TestRunner class writes
the test results to standard output as XML. Listing 7 shows how to extend the
TestRunner class (the magic constant 3000 indicates that the test will wait 3

seconds before closing down the MIDlet).

Listing 7
package com. foo ;

import jmunit.framework.cldc10. Test;
import jmunit.framework.cldc10.TestRunner;

public class SuiteRunner extends TestRunner {

private Test nestedTest;

public SuiteRunner () {
super (3000);
this.nestedTest = new Suite ();

}

protected Test getNestedTest () {
return this.nestedTest;
}

}

The testlistener task is added with the following taskdef

<taskdef name="testlistener" classname="jmunit.anttask.TestListener"

classpath="../dist/jmunit_anttasks-1.2.1.

jar" />

The following lines use Antenna to package the TestRunner into a MIDlet

<wtkjad jadfile="dist/alltests.jad" jarfile="dist/alltests.jar"

name="Al1Tests" vendor="CAM"

11

version="1.0.0">

<midlet name="AllTests" class="com.foo.SuiteRunner" />
</wtkjad>
<wtkpackage jarfile="dist/alltests.jar" jadfile="dist/alltests.jad"
preverify="true" obfuscate="false">

<libclasspath>
<path path="../dist/jmunit4cldc10-1.2.1.jar" />
</libclasspath>
<fileset dir="classes"/>
</wtkpackage>

The lines below start and stop the testlistener task and run the tests
within the emulator. Note that you must have set the wtk.home property in the
ant-properties.xml file to point to your installation of the wireless toolkit.
There is also an assumption that you’re using the Windows executable of the
WTK.

<testlistener haltonerror="false" haltonfailure="false" failureproperty="testfailure
todir="test_results_testlistener" run="true" />

<exec executable="${wtk.homel}/bin/emulator.exe">
<arg line="-Xdescriptor:dist/alltests.jad com.foo.SuiteRunner" />

</exec>

<testlistener run="false" />

The testlistener task monitors the text written by the TestRunner to
standard output and directs the text to a file ‘TEST-AllTests.xml’.

5 Acknowledgements

JMUnit relies on several open source projects and the distribution includes
binaries from several projects. The list below includes where the source code
may be obtained and the license governing the software (all licenses may be
found in the licenses directory):

e JDOM, http://jdom.org/; Apache license with the acknowl-
edgment clause removed: jdom-license.txt.

e The microemulator, http://microemu.org/; LGPL license,
version 2.1.

e Antenna, http://sourceforge.net/projects/antenna; LGPL
license, version 3.

e j2meunit, http://sourceforge.net/projects/j2meunit; com-
mon public license, version 2.0.

e Hammock, http://sourceforge.net/projects/hammockmocks;
Apache license, version 2.0.

References

[1] Paul Hammill, Unit Testing Frameworks, O’Reilly, Sebastopol, California,
2004.

12

[2] Kent Beck, JUnit Pocket Guide, O’Reilly, Sebastopol, California, 2004.

13

